If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6^2+b^2=8^2
We move all terms to the left:
6^2+b^2-(8^2)=0
We add all the numbers together, and all the variables
b^2-28=0
a = 1; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·1·(-28)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*1}=\frac{0-4\sqrt{7}}{2} =-\frac{4\sqrt{7}}{2} =-2\sqrt{7} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*1}=\frac{0+4\sqrt{7}}{2} =\frac{4\sqrt{7}}{2} =2\sqrt{7} $
| 3^2+b^2=8^2 | | 32.24=7g+3.65 | | 4(x=12)-5=79 | | 7^2+b^2=8^2 | | 75^2+b^2=85^2 | | 11.75=2g+3.51 | | 18^2+b^2=82^2 | | 18=6/7w | | 24^2+b^2=26 | | -4(r+2)=-70 | | 77^2+b^2=85^2 | | 7.3y-5.18=51.0 | | 266=32-u | | 89-w=214 | | -5(r+8)=-77 | | 4/r=7/5 | | 24^2+b^2=40^2 | | 2=v+3 | | 40^2+b^2=58^2 | | 12^2+b^2=13^2 | | 84^2+b^2=91^2 | | 2x+20=x+23 | | 5a-7=4a-4 | | 3(2b+60=(4b-8 | | d=(5.004)=2.826 | | 12/3+3n=4/5+15 | | 13x–5+4x=13+15x–8+2x | | d=5.004=2.826 | | 4v-4=8+8v | | 5/4=−4c+1/4 | | 7x+8=x+1 | | x/4+9=16 |